ZIGGURAT — DATA MODEL & FILE FORMAT

A proposal by (mostly) Stefan Evert and (minimally) Andrew Hardie.
Version 1.0 (2015-08-08)

Ziggurat is the database engine for CWB4. It consists of a data model, a file
format that expresses this model, and a software library for creating and
accessing data organized according to the this model. The Ziggurat library will
licensed under LGPLv3 or a more permissive non-copyleft license compatible
with (L)GPLv3 (such as the Apache 2.0 License, which the GNU project
recommends). Note that the library will build on other packages with different
licenses, notably Glib2 (LGPL) and PCRE (BSD).

The CWB4 software stack

* The diagram below visualizes the planned software stack for CWB4.

* The Ziggurat! data model specified in this document provides a low-level
representation and index file format for generic linguistic data structures.
A Ziggurat datastore consists of a collection of layers and variables.

* In CWB4, access to a Ziggurat datastore is mediated through an
intermediate-level representation (the CWB4 corpus model) and library.
A CWB4 corpus interprets certain layer/variable combination as
linguistic attributes (similar to the p- and s-attributes of CWB3); in
addition, it imposes various restrictions on the underlying datastore (e.g.
there may only be a single primary layer).

* CQP will be adapted to the new CWB4 corpus model, with modest
changes in the query syntax to provide support for the new attribute
types. It is to be decided whether CQP4 queries will still be based on
token sequence patterns (with suitable extensions to access constituency
and dependency structures) or whether they may also allow users to
match data units in other layers.

* Inthe long term, we can explore new query paradigms that build directly
on a Ziggurat datastore and go beyond the limits of CWB4 attributes. One
such QL is Stefan's pet project of a Lua-based Object-oriented Linguistic
Corpus Analysis Technology (LOLCAT).

1 Why “Ziggurat”? Because the following things are true of both a Mesopotamian ziggurat and one
of our datastores:

¢ Itis made up of a series of layers

* Layers are built using only very a simple set of basic architectural techniques

* Thelayers are all rectangular, but of different sizes

* Each layer is built on top of a foundational base layer

* Once you've built one, making internal modifications is not an option, unless you want

the entire structure to collapse around you.

* The end goal is to perform bloodthirsty human sacrifices on top of the resulting edifice.

One of the above is not actually true, but we're not saying which.

Car4

W84 Corpus

Z|ggurat datastore

Some general considerations

* In this document, the term user always refers to the application or
programmer using the low-level API to access a Ziggurat datastore, not to
the end users of an application program. When a human end user is
meant, it will be stated as such, in full.

* AZiggurat datastore is an abstract (or “virtual”) concept that does not
have to correspond to a single disk directory and/or be described by a
registry file.

o Each layer or variable of a datastore is identified by a random
UUID, generated when that layer/variable is created.

o All data pertaining to a layer or variable are stored in a single
container file on disk.

o Containers reference other containers? exclusively by their UUID.

o As a consequence, layers and variables do not need to have names;
neither do the actual files of a datastore necessarily have to be
collected in a single directory. The Ziggurat API will allow users to
associate layers and variables with unique names (layer names
unique within a datastore, variable names unique within a layer)
for software that exposes a Ziggurat datastore directly to end users
(rather than through the CWB4 corpus model). For example,
LOLCAT queries will make use of this facility. These names will be
stored by the relevant in-memory Ziggurat objects, but not by the
on-disk representation of those objects (so they do not persist
across sessions).

o Inorder to access a layer or variable, the user has to make sure
that all the layers and variables that it references are available to
the data engine. This is normally done by registering a container
disk file together with its UUID using a suitable API function.

Z A variable container is linked to the corresponding layer, i.e. it references the layer. A layer
container is linked to its base layer(s); the only case in which there is no such link is thus the
container of a primary layer.

o As a consequence of this, the low-level data engine has no need for
the concept of a datastore as a separate, fixed unit. In particular,
container files can be spread across different disk directories, and
new layers and variables can be registered at any time.
Consistency is always ensured by the UUID-based references.

o Users are encouraged to think of a datastore as the set of layers
and variables pertaining to a particular corpus. It is recommended
to collect the corresponding container files in a single disk
directory, and the API will offer convenience functions for
registering all containers found in such a directory or listed in a
text file with UUID /filename combinations.?

o This approach has two important advantages: (i) It is easy for end-
users to add “private” annotations at runtime by registering the
layers and variables corresponding to a new CWB4 attribute. No
write access to a main index directory or registry file is required,
and the new annotations will never affect other users. (ii) The
UUID-based referencing scheme guarantees consistency of
primary data and annotations. If primary data are changed (e.g. by
re-encoding a corpus, or changing the sentence boundaries
underlying an alignment attribute), a new UUID is assigned and
references from other annotation layers become invalid (or can
still be resolved to the old version of the corpus if the container
files are archived and registered). Query results also embed UUIDs
of the layers they are based on, so they can safely be stored on disk
(whereas CQP3 saved queries reference the corpus by name and
may be inconsistent if the corpus has been re-encoded in the
meantime).

* The notion of a CWB4 corpus is defined in the intermediate-level corpus
model. It is a collection of linguistic attributes, backed by a Ziggurat
datastore. A corpus is more restricted than a datastore; for example:

o There must be exactly one primary layer in a corpus.

o Attributes imply a particular linguistic interpretation of the
underlying Ziggurat data structures, e.g. an XML/constituency
attribute treats the nodes of a tree layer as XML elements.

o Attributes build on a Ziggurat layer, but often require additional
mandatory variables: e.g. an XML attribute requires an indexed
string variable specifying element names, and a dependency
attribute requires an indexed string variable specifying relation
types.

o In addition, each CWB4 corpus will be described by a single
metadata file, similar to a CWB3 registry file. This file will be
stored in the same directory as the index files, however. Runtime
extensions (e.g. with user attributes) should be allowed.

o CWBH4 attributes should also be assigned random UUIDs to ensure
referential integrity (esp. with private user attributes).

3 The use of such a registration file is more efficient because the individual file containers do not
need to be opened until the respective layer or variable is accessed. For example, CQP 4 may
need to register all available corpora in order to resolve references to the base layers of
alignment attributes.

* Main design principle: KISS

o For atool that will be maintained and developed exclusively by a
small volunteer community, code simplicity is an essential
requirement. It's better to have a simple tool that works and that is
actively maintained than a complex and highly optimized software
that only a single person understands (which is our first
impression of BlackLab, for instance).

o In other words, we don't want CWB4 to become the Perl 6 of
corpus query engines ...

* Consequences of the KISS approach

o Introduce as few different value types as possible; e.g., every
number is a signed 64-bit integer, even though lexicon IDs could
be stored more compactly as 32-bit values.

o Don't use different encodings for the same value type; e.g. integers
are always encoded as signed 64-bit values, even though an
unsigned representation would allow slightly better compression
if values are known to be non-negative.

o Rely on a small number of generic data structures (vector, set
vector, sort index, inverted index; see definitions somewhere
below) instead of defining customized data structures with faster
lookup or better compression rates; e.g. prefer sort index with
logarithmic lookup to constant-time hash lookup or B-trees with
better memory/disk locality. Don't use a clustered sort index to
speed up frequent operations by avoiding access to the underlying
vector (e.g. when traversing a graph).

o Obvious potential for optimizations of moderate complexity (such
as using B-trees instead of sort indexes) is highlighted in the draft
specification and should perhaps be considered in a later phase
once all basic work is complete.

This box describes potential for future optimization. ‘

o CQP 4 will use the same brute-force approach as CQP 3, relying on
fast corpus traversal with simple C code rather than clever use of
sophisticated indexes. Note that we don't make great efforts to
speed up common traversal steps (such as following a graph edge)
with the help of complicated data structures either.

o Inline with the KISS approach we will not attempt any multithread
programming within Ziggurat. However, we will make the Ziggurat
library compatible with multithread usage (no global variables or
non-thread-specific buffers, for instance), that is, all Ziggurat
functions will be re-entrant.

Ziggurat data model

Data model

A Ziggurat datastore (which is an abstraction that can be interpreted by higher-
level components of CWB4 as a corpus) is a collection of data layers. A data layer
is an ordered sequence of data units, each of which has values for one or more
variables. Each data unit in a layer is annotated with the same set of variables. It

is best to think of a data layer as an ordered table (similar to an SQL table, but
with a meaningful sequential ordering of the rows). The rows of a data layer are
identified by their sequence position (or just position for short) in the form of a 0-
based offset; e.g. position 41 refers to the 42" data unit in a layer.

Variables can have various data types such as

indexed strings: values are UTF-8 strings; all distinct strings (the types)
are collected in a lexicon. No character sets other than UTF-8 are
supported by Ziggurat (user software may choose to support other
character sets for input and output). Indexed strings are intended for
variables where the number of types is much smaller than the number of
tokens (= data units). Typically, such variables either have a fixed tag set
of possible values, or they represent lexical data with a Zipfian frequency
distribution,

plain strings: values are arbitrary UTF-8 strings. A specific string can be
looked up efficiently (using a sort index), but there is no type lexicon. A
regular expression search (even a simple prefix search) therefore
requires a full linear scan of the layer. Plain string variables are
appropriate if there are many distinct values and few or no repetitions;
typical use cases include unique sentence or token IDs and URLs of text
samples in a Web corpus. In most other cases, an indexed string variable
should be preferred.

integers: signed 64-bit integer values, which can also be reinterpreted as
fixed-point decimals by an application

sets: each data unit is annotated with an unordered set of indexed string
values. These variables are a convenience feature intended for sets with a
relatively small average number of members. In other situations, they do
not provide a compact representation and efficient search for specific
value combinations.*

hashes: each data unit is annotated with a set of key=value combinations
(forming a hash or associative array), where both keys and values are
indexed strings. There can be only one entry for each distinct key in a
given hash.® It is assumed that there will only be a limited number of
distinct keys (typically between 10 and 100), but there may be many
distinct values (with a Zipfian distribution). It is also assumed that the
number of distinct key-value combinations is not dramatically larger than
the number of distinct values.®

pointers: a pointer to another data unit in the same layer, implemented as
an integer variable representing the position of the target unit, where -1
indicates the absence of a pointer at a given position (i.e. a NULL value).
Formally, pointer variables represent a forest of unordered trees whose
nodes are the data units of the layers (cycles are currently not ruled out

4In such cases, an indexed string variable using the special “feature set” notation of CWB 3 is
considerably more efficient.

5 It would not be very difficult to support multi-valued hases in the Ziggurat file format. This
restriction is motivated by the KISS principle instead: multiple entries for the same key are
conceptually much more complex and would be at odds with all major programming languages.
6 These conditions are typically satisfied by the element attributes of an XML document, which
will be one of the main applications for hash variables in CWB 4.

by the data model, but they may well be disallowed by user software; esp.
by the CWB4 corpus model to avoid infinite loops in the query engine).

Each data layer can be linked to one or more other data layers. If layer A
references layer B we say that layer B is the base layer of A.” The class of a data
layer determines how its data units are linked to data units in its base layer(s).
Regardless of its class, every data layer contains a table of values for the
variables associated with the layer (which form the “columns” of that layer’s data
table). The first version of the Ziggurat data model will support the following
classes of data layer:

* primary layer: not linked to any other data layer, i.e. it consists just of a
data table. If the datastore represents a CWB4 corpus, there is a single
primary layer for the original token sequence including all token-level
annotations (POS tags, lemmas, ...). The formal data model allows
multiple independent primary layers in a datastore, which may thus have
different sizes and are not assumed to refer to the same token stream.?

* segmentation layer: represents a sequence of segments, and variables that
describe those segments. Each data unit is linked to a contiguous,
nonempty range of units in the base layer (which can thus be indicated by
a pair of start and end positions). Ziggurat uses Python-style indexing, i.e.
a range from position n to position k (inclusive) is represented by the pair
(n, k+1). These ranges may not overlap or nest, but there can be gaps
between consecutive ranges. Ranges are always ordered by their position
in the base layer.

* treelayer: similar to a segmentation layer, each data unit is linked to a
range in the base layer. These ranges may be nested hierarchically, but
may not overlap in any other way (i.e. there cannot be any crossing
brackets). Tree layers are designed to represent constituency structures
such as an XML document. Formally, they define a plane tree over their
base layer, but empty ranges (n, n) are explicitly allowed.

* graph layer: represents a graph of links between a source and a target
data layer, i.e. it has two base layers (which may in fact be the same
layer). Each data unit connects a single position in the source layer to a
single position in the target layer, i.e. it forms an edge between two data
units as vertices. There can be multiple edges for every source or target
position, but only one edge for any given pair of vertices. If the source and
target layer are identical, the graph layer defines a directed graph on this
base layer; otherwise, it forms a bipartite graph or alignment of the two
base layers.

7 If layer A references B as a base layer, B cannot have A as a base layer in turn. Formally, base
layer references form a directed acyclic graph. One can think of a Ziggurat datastore as one or
more hierarchies of annotation layers over the primary layer.

8 We are unlikely to implement extended support for corpora with multiple primary layers in
CWB/CQP for the foreseeable future. Note that each component of a parallel corpus is treated as
a datastore with “dangling” references to other datastores in the alignment attributes. This is an
exception to the referential integrity rule for Ziggurat datastores.

Indexing

While not a part of the data model proper, the types of lookup operations that
need to be carried out efficiently have consequences for our choice of data
structures and file formats. Below, we specify guarantees for the time complexity
of lookup operations in terms of the number n of data units, the number k of
lexicon entries, and the size r of the result set. Fast access to all the information
contained in a given data unit (all variables + links to base layers) is assumed
and not specified as part of the indexing requirements. With compressed storage,
each access to a data unit has O(log n) cost; reading different variables for the
same data unit incurs this cost for each variable (because of the column-oriented
format of a Ziggurat layer).

Within the table of a given data layer, each variable is stored and indexed
independently. We do not envisage support for multi-column or multi-row
indices, although users can simulate them with explicit “combo” annotations.
Required lookup operations depend on the type of the variable:

* indexed strings: fast mapping between distinct strings (types) and their
lexicon IDs = O(log k); search types with regular expression = O(k); find
all positions where a given type (ID) occurs = O(r); same for list of IDs
(either by sorting the complete list of positions, or via a streaming API)

* plain strings, integers: find positions where a specific value occurs = O(log
n); for integers, it is also possible to search for a range of values = O(r +
log n); regular expression matching on plain strings requires a linear scan
of the entire layer = O(n), but that is accepted

* sets: fast mapping between distinct values (types) and their lexicon IDs =
O(log k), as in the case of indexed strings; find all positions where a
particular value ID appears = O(r); search for a specified combination of
values = O(r1 + r2 + r3 + ...) where r; is the total number of occurrences of
the i-th value®

* hashes: fast mapping between key=value combinations and the lexicon
IDs of the key and value = O(log k); match value types for given key
against regular expression = O(m + log k), where m is the number of
distinct values that occur under this key; find all positions where a
particular key=value combination occurs = O(r + log k)

* pointers: find all tail positions that point to a given head position = O(r +
log n)

Additional lookup operations for data units depend on the class of the data layer.
They typically start from a position in the base layer(s).
e primary layer: no additional lookup required
* segmentation layer: find the unique range containing a given base layer
position = O(log n); preceding/following regions can then be identified
trivially from their sequence in the segmentation layer
* treelayer: find all ranges containing a given base layer position = O(r + log
n); navigate the tree of nodes (parent, children, preceding/following

9 Set variables do not index value combinations directly. A search for a given value combination is
carried out by searching for each of the values individually and then comparing the result sets.

sibling) = O(1) for parent and for following sibling, O(log n) for preceding
sibling, and O(r + log n) for children

e graph layer: find all edges starting from a given position in the source
layer = O(r + log n), or ending in a given position in the target layer = O(r
+ log n); this operation should be able to find all head positions for a given
tail (and vice versa) as efficiently as possible in order to enable fast graph
traversal, but won't be fully optimized because of the KISS principle

Ziggurat file format

It is useful to distinguish between the abstract value types and data structures
used to represent a datastore on the one hand and their particular serialization
encoding in Ziggurat index files on the other. We refer to the latter as the storage
mode of a value or data structure.

In order to estimate storage overhead and find a good trade-off between the size
of index files and efficient data access, we need to make assumptions about the
typical contents of a datastore, based on experience with CWB3 corpora. A
standard datastore (SDS) contains
* 1 billion data units in the primary layer (= word tokens)
* up to 10 million distinct types in an indexed string variable (word forms),
but indexed strings may also belong to a tag set of only 10-100 types
* 10-100 million units in a segmentation layer (sentences, tweets, etc.)
* up to 500 million data units in a tree layer (representing syntactic
constituent structure or a complex XML document)
* > 1 billion data units in a graph layer (dependency parse)
For larger datastores, sizes can be extrapolated linearly. The type count of an
indexed string variable should grow much slower, but in extreme cases near-
linear growth has been observed.1? For example, a 10 SDS datastore has 10
billion tokens, 100 million - 1 billion sentences, and there may be as many as
100 million distinct word form types, etc.

Value types
All Ziggurat data structures are constructed from two basic value types:
* integer = signed 64-bit integer
* string = NUL-terminated UTF-8 string in NFC normalization
o no other character encoding or normalization form is allowed
o the canonical Ziggurat sort order is based on a comparison of
strings as sequences of unsigned bytes (using memcmp () from the
standard C library); it is rarely needed in the new data model!!

10 Such growth patterns can be found for word forms in Web corpora with little cleaning and
filtering. For example, DECOW has 13M types in the first 1G tokens, and 63M types in the full 9G
tokens. This is one of the reasons behind our decision to use 64-bit integers for lexicon IDs
despite their considerably larger memory footprint.

11 The main reason for this is that string lookup (e.g. in the type lexicon of an indexed string
attribute) is based on integer hash keys rather than a sorted list of strings (as in CWB3).
Moreover, feature sets can now be represented explicitly with set variables and no longer rely on
a conventional (sorted) ordering of the values in a set. The only plausible use cases for canonical

o the canonical hashing algorithm for strings is a modified 64-bit
version of the hash function used in CWB 3.5, which is itself a
modification of D]B2a; the precise details of the algorithm are to be
specified

Other hash functions should be explored based on experiments with
realistic data sets in order to measure speed of computation and
uniform distribution of the hash values.12 Following the KISS principle,
we should stick with a simple algorithm that processes one byte at a
time unless there are very good reasons to use a more complex method.
The low-level datastore API and implementation should only use variables of
these two types (as well as structures and vectors composed from such
variables), with few exceptions (e.g. bit vectors could be used as an in-memory
representation for a set of lexicon IDs matching/not matching a given regular
expression, as the CWB3 does).

Storage modes for basic value types:

* Int: signed 64-bit integer in little-endian byte order'3; must be aligned on
an 8-byte boundary within the disk file

* Varlnt: variable-length encoding of a signed 64-bit integer, using a
modified version of the SQLite varint format. This modification is as
follows: If the 2nd bit of the first byte is set, the binary complement of the
encoded value is computed, so that small negative values also have a
compact encoding (in the original format, negative values always require
9 bytes of storage).1* A VarInt is between 1 and 9 bytes long; it does not
have to start on a particular boundary.1>

¢ String: NUL-terminated UTF-8 string in NFC normalization. Consecutive
strings can be packed without padding since no alignment is required.

sorting in Ziggurat are out-of-core (i.e. on-disk) merge sorts and the combination of data tables
from different sources.

12 See http://programmers.stackexchange.com/questions /49550 /which-hashing-algorithm-is-
best-for-uniqueness-and-speed for a list of hash functions with benchmarks & collision counts.
13 This is intended to reduce overhead from endianness conversion, since the dominant CPU
architecture for the forseeable future (x86_64) uses a little-endian byte order. It clashes with the
widespread use of big-endian byte order for platform-independent file formats (in particular IP,
hence also known as “network order”) and means that the (presumably efficient) POSIX macros
nothl() and htonl() cannot be used for the conversion. The low-level API will need to define
its own conversion macros, which are no-ops on little-endian platforms. Note that gcc has
intrinsic macros __builtin_bswap32and _builtin_bswap64, which are efficient on major
CPUs.

14 [n particular, values between -64 and +63 can be encoded in a single byte, values between -
8192 and +8191 in two bytes, and values between -1048576 and +1048575 in three bytes.

15 If integer values are known to be non-negative - typical examples are lexicon IDs or an
increasing sequence with §-compression - it would be slightly more size-efficient to use the
original SQLite varint format without a sign bit (which we call the UVarInt storage mode). A
UVarlnt can store values up to +127 in a single byte, and up to +16383 in two bytes, but would
require 9 bytes to encode any negative value. Mixed use of VarInt and UVarInt storage modes
seems error-prone (because the same bit patterns are valid in both modes but encode different
numbers), and we decided that the additional overhead is justified by the easier implementation.
See also the note in the introduction about the KISS principle!

Generic data structures
All layers and variables in a Ziggurat datastore are constructed from only five
generic data structures:

* ablob of arbitrary binary data (usually unpadded Strings);

* avector of fixed-sized elements (i.e. tuples of integers);

* avector of variable-length items (i.e. lists of integers);

* asortindex with integer sort keys; and

¢ an. inverse index, which enumerates the occurrences of each one of a set

of types.

In this section, we describe the abstract data structures at a conceptual level,
work out storage modes for their serialization in index files, and list the main
access patterns afforded by the data structures. In the following section, the
components making up different layer and variable types are defined in terms of
the generic data structures. Most data structures offer an uncompressed and a
compressed storage mode. For each layer/variable component the specification
mandates either compressed or uncompressed storage, depending on the
expected data size and access patterns. The general recommendation is to use
uncompressed storage for O(k) data size (i.e. data structures over types), and
compressed storage for O(n) data size (i.e. data structures over tokens or
annotation elements).

Additional, more specialized data structures might achieve better
performance for certain access patterns, but have been rejected in
favour of the KISS principle. We might want to reconsider this decision
when a first implementation is available for benchmarks.

A blob is a block of arbitrary binary data that is interpreted by the application.
Blobs are most commonly used to hold unpadded String values.
* The only supported access pattern is to read a specified number of bytes
or a NUL-terminated string from a given offset in the blob.

A vector is a sequence of fixed-size items (i.e. integers or tuples of integers, which
are the only fixed-size values in Ziggurat) accessed by their position in the
sequence (enumerated starting from 0).

* The main access pattern is to read the item at a given position. Sequential
reads of consecutive positions (either ascending or descending) should be
particularly efficient.

* Inuncompressed storage mode, a vector of length n over d-tuples of
integers is serialized as a sequence of n x d Int values. Reading an item
requires a single memory access at the computed location, with O(1) cost.

* In compressed storage mode, the vector is split into synchronization
blocks (called blocks for short). Values within a block use interleaved §-
compression with variable-length encoding (explained below). Since each
block has to be decoded sequentially, access to a single item incurs the
overhead of a full block decode. Block size is thus a crucial parameter
determining the trade-off between disk size and CPU overhead.

o In CWB3 huff-coded token streams, the block size is
SYNCHRONIZATION = 128.

o For Ziggurat, a much smaller block size of 16 or 32 units is
recommended (corresponding to a synchronization overhead of
0.5 or 0.25 bytes per unit).

o Asitis not obvious in advance what the best value would be, and
as parameterizing block size introduces only minimal additional
complexity, we will make the block size variable. For any vector,
the block size that it uses will be recorded within the file. Only a
small number of pre-defined values will be allowed, e.g. 8, 16, 32,
64 and 128.

o With smaller synchronization blocks and byte code instead of bit
streams, access to compressed vectors should be up to 4x faster in
Ziggurat compared to CWB 3.

* In order to simplify the synchronization, each block contains the same
number of items. As a result, storage size varies across blocks (unlike in
typical database formats, where block storage size = page size).

* An additional synchronization vector of Ints stores the byte offset of each
block, resulting in an overhead of 8 bytes / block. Since compressed
blocks use byte-codes for all values, no padding is required between
adjacent blocks.

* The data in each synchronization block are compressed by interleaved 6-
coding using Varints. Given a list of integer tuples

X11 X12 X13
X21 X22 X23
X31 X32 X33
X41 X42 X43

the synchronization block stores the values
X11, X12, X13, X21—X11, X22—X12, X23—X13, X31—X21, X32—X22, ...

in VarInt encoding.
If the vector stores independent values (e.g. lexicon IDs in the token
stream of an indexed variable), compression would be more efficient
and easier to decode without 8-coding. We might reconsider to
parameterize this option so vectors can be serialized in either form. The
actual effect on storage size should be tested empirically first.

* Linear forward/backward scans are efficient, provided that the
implementation keeps a cached copy of the current synchronization block
in expanded form.

o CWB3 caches the last decoded block. Extending the cache to the 2
or more blocks might improve performance in certain cases. It is
easy to implement a LRU (“least recently used”) caching scheme
for this purpose. Overhead of cache checks should be negligible
compared to a full block decode.

A set vector is a sequence of variable-length items, each item consisting of a list of
integers. Unlike ordinary vectors, set vectors only offer a compressed storage
mode (because we would not be able to compute the offset of a given position
directly in uncompressed storage).
* The set vector is split into synchronization blocks of a specified length.
Each block stores the same number of items, regardless of the total

number of values in those items. The same block sizes are supported as
for vectors, but smaller blocks (8 items) may be appropriate in typical use
(were the relative overhead of the synchronization vector is smaller).

* The synchronization vector is identical to the one for ordinary vectors.

* The file format encodes a list of] integers x1, xz, ..., X1 (i.e. one item of the
vector) by a VarInt specifying the list size [, followed by the individual
values in §-compressed form, i.e. the sequence I, x1, x2 - X1, ..., Xi - Xi-1
where each value is stored as a Varint.

* The items within a synchronization block are simply concatenated
without any padding. Access to any value within the block requires a full
block decode.

o An efficient implementation of this data structure should cache
one or more decoded blocks in a LRU scheme. Because of the
variable sizes of individual items, this cache will have a more
complex structure (list of lists) than for an ordinary vector.

A sort index over a vector enables fast lookup of a particular value or range of
values. It is implemented as a sorted list of (value, position) pairs linking values
in the indexed vector and the positions at which they occur; the pairs are sorted
by value first, then position.1® More generally, the sort index associates each item
of a vector with a (not necessarily unique) integer key computed from the item
and stores a list of (key, position) pairs sorted numerically by key value, then
position.1”

* Asortindex is used to locate all items with a given key or range of
adjacent keys (in numerical sort order) in O(r + log n) time. This is true
for both uncompressed and compressed storage mode, but there is
additional O(1) overhead for a block decode in the compressed form.

* If possible, the implementation should provide cursors to iterate through
consecutive entries in O(1) time. Backward iteration does not seem to be
feasible in compressed storage mode.

* Asortindex can be stored in uncompressed or compressed form. An
uncompressed sort index is simply a vector of integer (key, position)
pairs in the specified sort order.

* The first entry with a specific key is found by binary search in O(log n)
time. All further entries with the same key are then simply read from the
sort vector. Uncompressed storage is normally used for sort indexes over
types.

* The compressed storage mode of a sort index is similar to that of a vector,
with two important differences:

o All entries with the same key value must be combined in a single
synchronization block, for which we thus cannot enforce a fixed
number of entries. Instead, we specify a target block size

16 The first item in each pair corresponds to a value in the indexed vector, and the second item in
that pair is the position at which that value occurred. If the indexed vector contains duplicate
values (or values that map to the same sort key), these are represented by multiple pairs in the
sort index in order of vector position.

17 In the case of an integer vector, the key is simply the stored value itself. In other cases, it
corresponds to part of the value (e.g. the start position of a range represented as a (start, end)
pair) or is derived in some way from the original value (e.g. a hash key for a string value).

(determined in the same way as for vectors, i.e. parameterized)
and append all further entries with the same key as the last regular
entry.1® The same interleaved §-compression scheme is applied as
for vectors, but there is an additional Varint at the start of the
block specifying the actual number of entries.

o The synchronization vector stores the first key value in each block
in addition to the offset pointer, i.e. it is a vector of integer pairs.
Storage overhead thus increases to 1 byte or 0.5 bytes per entry,
but that is accepted in order to reduce expensive block decodes.1?

* The interleaved §-compression scheme should be very effective for the
sort keys, which are listed in ascending order, especially if keys are
numerically close or there are many repeated keys (so many entries
require only 1 byte of storage for the key part). It will be much less
effective for the corresponding positions, except if keys tend to cluster
locally in the underlying vector.20

* Inorder to locate the first entry with a given key value x, we first carry
out a binary search on the sort keys in the synchronization vector for the
largest key value < x, then we decode the corresponding block until an
entry with key x is found (or there are no such entries). Note that despite
having variable-sized blocks, we never have to decode more entries than
the target size (typically 16 or 32) because all further entries in this block
must have the same sort key.

* Therefore, time complexity is O(log n) for the binary search in the
synchronization vector plus O(1) for a single block decode.

* The implementation of an iteration cursor will have to remember the
current block, size of the current block, last key and position value
(because of 6-coding), and the number and offset of the next entry to be
read.

Compressed sort indexes could be made more compact and efficient if
the synchronization vector is extended to a full B-tree structure (or,
more precisely, a B+ tree). The simplest solution would be to store the
synchronization vector itself as a compressed sort index. Binary search
would be carried out only for the short second-level synchronization
vector, followed by two block decodes (one for the compressed
synchronization vector, one for the main sort index). Synchronization
overhead can be reduced considerably in this way, smaller
synchronization block sizes are feasible, and the search procedure has
better memory/disk locality than a direct binary search. An actual speed

18 Note that this makes it impossible to decode a full synchronization block into a limited amount
of cache memory (because there could be any number of entries with the same key). The
implementation of sort indexes will have to use online decoding instead. Due to the different
access pattern, the lack of a LRU cache should not be a major problem.

19 Overhead could be reduced slightly with a modified §-compression scheme that doesn't repeat
the first sort key in the block (which is known from the synchronization vector). The small gain
from this modification doesn't seem to justify another special case, though.

20 Two such examples are (i) the sort index for the head positions of a pointer variable (which are
usually close to the tail positions) and (ii) the sort indexes for the start and end positions of a
segmentation layer (which are already in ascending order). See the next section for details.

benefit will have to be demonstrated before we abandon the KISS
principle, though.

An inverted index collects the positions of occurrences for each one of a set of
types. Usually types are the entries of a given lexicon and positions refer to an
underlying data vector, but other applications are also possible. The data
structure consists of one sorted list of positions for each type, called a postings
list.

* The main access pattern for an inverted index is to obtain all occurrences
of a given type, sorted by position, with a cost of O(r). Stream access
should be possible in order to avoid large memory buffers for frequent
types.

* The implementation should provide similar access to the occurrences of a
set of types, sorted into a single list. This is considerably more complex
because multiple position streams have to be decoded in parallel and
combined by a merge sort. It is difficult to estimate the additional time
complexity incurred, though.

* Like a set vector, an inverted index can only be stored in compressed
form (because with typical access patterns there are no advantages to
uncompressed storage).

* For each type, the postings list is stored as a §-compressed sequence of
Varlnts (which, by the way, is identical to the special case d=1 of the
interleaved §-compression scheme) indicating sequence positions in
numerically sorted order.

¢ Ifthe type is very frequent, an optional jump table can be provided in
order to find occurrences within a particular range of positions (e.g. a
relatively small subcorpus). The jump table consists of integer (position,
offset) pairs, where offset is the byte offset of the Varint for the next §
increment after position in the main postings list. It is stored in the
standard interleaved §-compression scheme for sort index
synchronization blocks, starting with a VarInt specifying the number of
entries in the table.

* Finally, there is an uncompressed offset table of 3 x k Ints (where k is the
number of types), which provides pointers to the main postings lists. Each
integer triple describes one type and is interpreted as follows:

o Ifthe type has f < 3, the three integers specify its occurrence
positions directly. Empty fields (for f < 3) are padded with -1.

o Otherwise, the first integer holds the value -f; i.e. the negative
frequency of the type (negative to distinguish it from a sequence
position). The second integer holds the byte offset to the start of
the 8§-compressed postings list for the type. The third integer holds
the byte offset to the start of the optional jump table; it is set to -1
if no jump table is present.

* To determine the frequency of a type:

o Locate the appropriate entry in the offset table.

o Ifthe first integer is negative, flip its sign to obtain the frequency.

o Otherwise, compare following integers with -1 to determine
whether frequency is f=1, f=2 or f=3.

* To obtain the postings list of a single type:

o Locate the appropriate entry in the offset table and determine the
frequency f of the type.

o Iff<3, obtain positions from the offset table.

o Otherwise, go to offset specified by second integer and read f 6-
encoded Varlnts.

o Ifoccurrences in a certain range of positions have been requested
and the third integer is not -1, go to offset of jump table and read
number of entries. Linearly scan jump table for largest position
value < start of the range. Use offset into main postings list to
decode occurrences from this point.

The inverted index is one of the few cases where we do not fully adopt
the KISS principle and include jump tables as an optimization. Note that
these tables are completely optional and will neither be created nor
used by the first Ziggurat implementation. The data format makes
provisions so that they can later be added without any incompatible
changes. The main reason for this decision is that jump tables can
substantially speed up index lookup for searches in a relatively small
subcorpus, a common usage pattern in CWB 3. They are also used in IR
engines for more efficient intersection of postings lists (cf. Manning et al.
2008: 36f, where they are called “skip pointers”).

Variables

The assorted data structures that represent a Ziggurat variable or layer
(including its references to one or more base layer) are organized into
components such as lexicons, ID streams, sort indexes, inverted indexes, etc. All
components of a variable or layer are combined in a single container file.21 In
other words, there will be one container for each variable of an annotation layer
plus one container for the layer itself, substantially reducing the number of
individual files (and thus of open file handles) compared to CWB 3. Components
are identified by short names and should be accessed in this way when reading a
container file.

Each container starts with a container file header which contains: a Ziggurat
magic number; the UUID of the object; the layer or variable type; references to
the base layer(s); a list of all components, their types, and offsets within the
container; and other relevant metadata (see extended discussion below under
Housekeeping). This file header is not mentioned explicitly in the variable/layer
definitions below.

Indexed string variable
* Lexicon component: Blob containing concatenation of types as Strings
without any padding.
* LexPtr component: Uncompressed vector of integer byte offsets, pointing
to the start of each string. The vector position corresponds to the lexicon
ID of a type. Types are sorted by decreasing frequency, with ties broken
in CWB sort order. The strings in the Lexicon component must be stored

21 Padding will ensure that each component is aligned at least on an 8-byte boundary to
guarantee efficient access to uncompressed Int values.

in the same order, so the byte length of each string can be inferred from
consecutive LexPtr values. For this purpose, the component is padded
with one extra entry at the end.

LexHash component: An uncompressed sort index over the LexPtr
component, with 64-bit hash values computed from the type strings as Int
keys (using the standard Ziggurat hash algorithm) and positions
corresponding to lexicon IDs. This component is effectively a hash table,
but easier to manage because there are neither buckets nor collisions to
take into account.

[DStream component: Compressed integer vector of lexicon IDs (for each
position in the layer).

Invidx component: An inverted index that contains a postings list for each
lexicon ID, i.e. an ordered list of the positions of its occurrences in the
[DStream vector.

Access patterns:

Obtain a pointer to the (const) string value for a lexicon ID directly from
the uncompressed LexPtr component.

Determine the lexicon ID of a given literal string by computing its hash
key and carrying out a binary search in the LexHash component. If one or
more matching hash keys have been found, the corresponding strings
need to be checked (unless we accept a small number of false positives ;-).
Prefix searches are no longer possible with the new hash table approach
(but have never been implemented in CWB 3 anyway).

Search lexicon with regular expression by linear scan of LexPtr. CWB3
Boyer-Moore optimization can be applied within each individual string
(provided that its byte length is known in advance).

Determine the frequency of a given lexicon ID from the Invidx component,
as described in the previous section.

Determine the lexicon ID for a given layer position from the compressed
[DStream vector, requiring a direct lookup in the synchronization vector
plus a single block decode (unless the block is already in the LRU cache).
Obtain the occurrences of a given lexicon ID (or set of lexicon IDs) from
the Invidx component, as described in the previous section.

Plain string variable

CharData component: Blob containing the concatenation of unpadded
String values in the same ordering as they appear in the layer. In contrast
to an indexed string variable, there may be multiple copies of the same
string.

StringStream component: Compressed integer vector specifying for each
layer position the byte offset of the annotation string in CharData, padded
with one extra entry at the end so that the byte length of each string can
be inferred.22

StringHash component: A compressed sort index over StringStream, using
the hash values of the annotated strings as keys.

22 Notice that CharData + StringStream are very similar to Lexicon + LexPtr of an indexed string
variable. The difference is that LexPtr extends over k types, whereas StringStream extends over n
tokens; compressed storage is therefore required for the latter.

Access patterns:

* Obtain a pointer to the (const) string value at a given layer position from
the compressed StringStream component, requiring a single block decode
or LRU cache lookup.

* Find all occurrences of a literal annotation string by computing its hash
key and performing a binary search in StringHash (plus synchronization
block decode because the sort index is compressed). If one or more
matching keys are found, the corresponding strings have to be checked.

* Prefix or regular expression search requires a full linear scan of
StringStream + CharData and is not recommended.

Integer variable

* [ntStream component: A compressed integer vector listing the integer
value annotated at each layer position.

* IntSort component: A compressed sort index over IntStream in which the
sort keys are simply the actual integer values.

Access patterns:

* Obtain the value at a given layer position from IntStream, requiring a
single block decode or cache lookup.

* Locate the first occurrence of a given integer value (or range of values) by
binary search in IntSort, followed by a single block decode. Additional
occurrences are then read with an iteration cursor. Note that no
additional checks are required since the sort key is identical to the actual

underlying value.
Pointer variable
* A pointer variable is simply an integer variable where -1 represents the
NULL value.

o But the NULL value of -1 is not treated in any way specially within
the data index itself: it is stored normally. This means that,
conveniently, all NULL pointers will be stored in a single
synchronization block in the sort index and thus do not have to be
searched when looking up a non-NULL value.

* The integer values specify the head position of a pointer whose tail is the
current layer position. This encoding is possible because there can be at
most one such pointer.

Access patterns:

* Find unique head position for a given tail position by reading the
IntStream component. If the value is -1, there is no pointer at this
position.

* Find all tail positions pointing to a given head position by binary search of
the IntSort component for the head position.

Set variable
* Lexicon, LexPtr, and LexHash components store a lexicon of all distinct
values occurring in all sets.
¢ SetIDStream component: A compressed set vector storing the lexicon IDs
of all set members in sorted order for every data unit,

Invidx component: An inverted index that contains a postings list for each
lexicon ID, i.e. a sorted list of all positions where the corresponding value
occurs as a set member. Note that the same position may occur multiple
times in the inverted index, once for each member of the set annotated at
the position.

Access patterns:

To read the set annotated at a given position, decode the relevant
synchronization block in the SetIDStream, determine the size of the set
and the list of lexicon IDs, and obtain (const) pointers to the string values
from the LexPtr component.

Lexicon search (for a specific string or with a regular expression) is
carried out in the same way as for an indexed string variable.

The frequency of a given lexicon ID and its full postings list are obtained
from the Invidx component, in the same way as for an indexed string
variable.

To locate sets containing a given combination of lexicon IDs (i.e. a subset
search), a separate postings list for each ID is obtained from Invidx, then
their intersection is computed. A good implementation does not need to
materialize the individual lists, but iterates over them in parallel (possibly
using jump tables for further optimization). It is also possible to support
exclusion constraints (e.g. find all sets that contain A, but not B or C) with
the same search strategy.

[t is not possible to know the frequency of a combination of values in
advance, as Invldx only contains frequency information for single IDs.

If sets often contain a relatively large number of members (> 5) but
there is only a limited number of distinct sets, the file format of set
variables is much less compact and efficient than the CWB3 approach of
using and indexed string variable with special set notation. It would be
better in these cases to store a list of all distinct sets (in the form of a
compressed set vector + inverted index), assigning a unique set ID to
each item. The main position stream + inverted index would then just
store a single set ID at each position. This complicates the Ziggurat
implementation, however, and leads to unnecessary overhead in other
situations (with very many distinct sets). If such an extension is defined,
it should be optional, i.e. a parameter of the variable. The extension is
probably not useful for typical use cases of hash variables. A better
solution might be to provide support functions for CWB3-like feature set
notation, so users can fall back on this approach if a set variable turns
out to be too inefficient.

Hash variable

Keys, KeyPtr, and KeyHash components: a lexicon of all distinct keys.
Values, ValuePtr, and ValueHash components: a lexicon of all distinct
values.

Pairs component: An uncompressed (integer, integer) vector listing all
distinct key-value combinations as (key ID, value ID) pairs. Entries are
sorted by decreasing frequency of the key-value combination (to ensure
compact storage in PairsIDStream), with ties broken by key ID, then value
ID. The position of a key-value combination in this vector is its pair ID.

Access

Layers

PairKeyldx component: A compressed sort index over the Pairs vector,
using the key ID of each pair as a sort key.

PairValueldx component: A compressed sort index over the Pairs vector,
using the value ID of each pair as a sort key.

Pair[DStream component: A compressed set vector that stores, for each
position, the pair IDs of all key-value pairs present at this position.
Pairlnvidx component: An inverted index that contains a postings list for
each pair ID, i.e. a sorted list of all positions where the corresponding key-
value combination occurs. Keep in mind that the same position may occur
multiple times in the inverted index, once for each key-value combination
stored in the hash that is annotated at this position.

patterns:

The PairIDStream and Pairlnvidx components can be understood as a set
variable over key-value pairs. Therefore, access patterns are the same as
for set variables, with the additional step of determining a pair ID from
separate key and value IDs (or vice versa).

Uncompressed storage of the Pairs component is based on the
assumption that the number of distinct key-value pairs is not much larger
than the size of the values lexicon. It enables fast lookup of the key and
value part of a given pair ID. The string representation of a key-value pair
can be recovered with one direct lookup each in Pairs, KeyPtr and
ValuePtr.

In order to find the pair ID corresponding to a given combination of key
ID and value ID, look up the value ID in PairValueldx and then iterate over
all matching pairs until the specified key ID is found. This strategy is
based on the assumption that the number of distinct keys is much smaller
than the number of distinct values, and that most values will occur only
under one or a few keys.

In order to carry out a regular expression search on the values stored
under a particular key, look up the key ID in PairKeyldx, iterate over all
matching pairs in the Pairs vector and apply the regular expression to the
corresponding value strings. This strategy is very efficient for keys that
take a small set of distinct values because only these values need to be
matched against the regular expression. Occurrences of the resulting list
of pair IDs are then determined by computing the union of their
respective postings lists.

As for set variables, it is not possible to know the “joint” frequency of a
given combination of key-value pairs without computing the intersection
of their position lists. The frequency of their union - which arises e.g. in
the case of a regular expression search under a particular key described
in the previous item - can easily be determined if the key-value pairs are
known to be mutually exclusive (in particular, if each key may appear at
most once per hash).

Primary layer

* Does not require base-layer reference data, so there are no additional
data structures after the container file header.

* Aprimary layer simply provides a virtual sequence of positions (data
units) to which variables can refer.

Segmentation layer

* Ranges component: A compressed (integer, integer) vector representing
ranges in the base layer as pairs of (start, end+1) positions, i.e. using the
Python indexing scheme.23 Ranges are sorted by increasing start position
They must not overlap or nest, and cannot be empty in a segmentation
layer.

¢ Startldx component: A compressed sort index over the Ranges vector
with the start position of each range as integer key.

* Endldx component: A compressed sort index over the Ranges vector with
the end+1 position of each range as integer key.

Access patterns:

* Obtain start and end position of the i-th range from Ranges component.
Find unique range enclosing a given position p in the base layer by binary
search of the Startldx component for the last range starting before p; then
check whether this range in fact contains p.

* The Startldx and Endldx components are used to check quickly, i.e. in
O(log n) time, if a given base layer position is the start or end of a region,
which is frequently needed in CQP 3. Binary search on the compressed
Ranges vector would be extremely inefficient.

Tree layer:

* Ranges component similar to segmentation layer. Ranges may be nested
hierarchically and empty ranges are expressly allowed, but there must
not be any crossing brackets. Ranges are ordered according to their start
tags in an XML serialization, which corresponds to a pre-order traversal
of the tree.?*

¢ Startldx component as in segmentation layer.

* Endldx component as in segmentation layer.

* In addition, every tree layer has two special pointer variables, which are
referred to as _parent and _next in this document.2> For each element of
the tree (i.e. data unit in the tree layer), they point to the parent element
(_parent) and the following sibling (_next), respectively.

Access patterns:

* Obtain start and end position of the i-th range from Ranges component.

* Finding the lowest element in the tree that encloses a given position x in
the base layer is quite tricky. First, use Startldx to find the last element e

23 Python indexing is used for two reasons: (i) it simplifies some computations, such as the length
of a range or splitting ranges in a binary search; (ii) the encoding of empty ranges as (i, i) seems
more natural than (i, i-1) according to the CWB3 indexing scheme.

24 An earlier version of this document specified that ranges should be ordered by increasing start
position, then decreasing end position. This is equivalent to the new ordering by start tags unless
there are (i) empty ranges or (ii) multiple ranges with the same start and end position.

25 Of course, they don't really have names but are rather identified by UUID, so there is no risk of
a collision with user-defined variables.

with start position < x; this element must be a descendant of all elements
that contain x. If e contains x, it is the desired element. Otherwise, follow
the _parent pointers until an element containing x is found or no such
element exists.

Navigating the element tree is easy by forward and backward traversal of
the _parent and _next pointers. Note that the ordering rules for sort
indexes ensure that backward traversal of _parent returns children in
their corpus order (by start tag).

All start tags at a given base layer position can easily be found through the
Startldx sort index. They are already listed in the correct order in the
Ranges component.

All end tags at a given base layer position can be found through the
Endldx sort index. For non-empty elements, they are returned in reverse
order, i.e. the last end tag (corresponding to the earliest start tag) is
returned first. The precise position of empty elements can only be
determined by traversing the tree structure. For example, the sort order
doesn't distinguish between <a/> and <a>.

Reconstructing the original XML tags is fairly tricky and will require many
special cases for correct positioning of empty elements. This is left as an
exercise to the poor sod implementing the Ziggurat library.

Graph layer:

Edges component: A compressed integer vector of (tail, head) pairs,
where tail is the position of the edge in the source base layer and head its
position in the target base layer. Data units are ordered by increasing tail
position first, then increasing head position.

Tailldx component: A compressed sort index over the Edges vector using
tail position as integer key.

Headldx component: A compressed sort index over the Edges vector
using head position as integer key.

Access patterns:

The tail and head position of a given edge are obtained from Edges.

Find all edges starting from a given tail position in the source base layer
through binary search of the Tailldx sort index. The corresponding head
positions then have to be read from Edges. If there are multiple edges,
they are adjacent in the Edges component and can be accessed without
much overhead.

Find all edges ending in a given head position in the target base layer
through binary search of the Headldx sort index. The corresponding tail
positions then have to be read from the Edges component, where they
will usually not be adjacent.

The current design of graph layers leaves much room for optimization.
For graphs with many edges, the duplication of head and tail positions in
Headldx and Tailldx may be wasteful. Traversing the graph is expensive
because each step requires a O(log n) binary search in Tailldx or
Headldx, followed by a lookup of the corresponding head or tail position
in the Edges component (which may result in an additional block
decode). Checking relation labels requires yet another access to a

compressed vector in the corresponding indexed string variable. Graph
layers are thus a primary candidate for more specialized data
structures.

Housekeeping
Container files have to include a header listing
e their random UUID,
* the layer or variable type,
* abill of materials (see definition below) for each component,
* and perhaps further information.

Ziggurat containers should be self-describing, i.e. they should contain a complete
bill of materials (BOM), listing for each component

* the component name (NUL-terminated string);

* the type of the component and its parameters if applicable (e.g. the
number d of integers in each element of a vector, the size of
synchronization blocks, etc.);

* the byte offset and length of the component.

Such a BOM opens the possibility of user-defined container types, which don't
need to be declared specially. Applications can simply check whether the
expected components are present and have appropriate types; they can use low-
level functions in the Ziggurat library to access the individual components (as
described above).

User-defined containers would not complicate the implementation of Ziggurat
and CWB 4 in any way. The normal API functions only accept standard
containers (i.e. those declared with a standard type). The BOM provides
additional safety since (a) components are accessed by name rather than an
implicitly defined ordering and (b) component types can be verified.

